
Garbage Collection
Goodies

what are we doing with all this garbage anyway

http://www.youtube.com/watch?v=BkHCO8f2TWs

In the beginning…

The Entscheidungsproblem

“We can know, we must know”

Church-Turing Thesis

Early Computers

The Stack

STACK

push
pop

The Stack
STACK high memory

low memory

SP

stack frame

The Stack

STACK OVERFLOW

Heap

The Heap

The Heap

ALLOCATOR

MALLOC

FREE

The Heap

The Heap

Garbage Collection

“The Goal of the Garbage Collection provides the illusion that a language runtime has

infinite memory.”

Tracing

STACK GLOBALS

Scheduling

How often do we run our garbage collector?

Escape Analysis

Reference Counting

1 1 2 1 5 1

1 1 3 4

2

1 5

2 2 6 6 7 5 1

4 8 5 3 1

3 4 2

Reference Counting

1

1

1

2 2

1

1

STACK

2

Mark and Sweep

STACK GLOBALS

Mark and Sweep

Stop and Copy
STACK GLOBALS

Stop and Copy

Generational Garbage Collection

“Most Object Die Young”

Generational Garbage Collection

Old Heap New Heap

Generational Garbage Collection

Mark Compact Garbage Collection

Mark Compact Garbage Collection

TCMalloc

Garbage Collection In Go

“This omission is intentional and enables the use of radically different memory

management techniques.“

A Guide to the Go Garbage Collector

Garbage Collection In Go

● Escape Analysis

● Tracing

● GC Scheduling (CPU usage vs Memory Usage)

Memory vs CPU tradeoff

“doubling GOGC will double heap memory overheads and roughly halve GC CPU cost”

A Guide to the Go Garbage Collector

Memory vs CPU tradeoff

https://tip.golang.org/doc/gc-guide

https://tip.golang.org/doc/gc-guide

Optimizing The Go GC

● Make sure the GC is actually a limiting factor for your program (just like any other performance issue)
○ CPU profiles
○ Execution traces
○ GC traces

● Eliminate Heap Allocations
○ $ go build -gcflags=-m=3 [package]

● Configure your environment
○ $GOGC / runtime.SetGCPercent()
○ $GOMEMLIMIT / runtime.SetMemoryLimit()

GC Thrashing

GC Thrashing

Latency Vs CPU usage

“reducing GC frequency may also lead to latency improvements”

Tricolor Concurrent Nonmoving Mark and Sweep

PROGRAM HEAP

Tricolor Concurrent Nonmoving Mark and Sweep

PROGRAM WHITE

Write Barrier

Tricolor Concurrent Nonmoving Mark and Sweep

STACK GRAY

WHITE

WHITE

WHITE

Tricolor Concurrent Nonmoving Mark and Sweep

STACK BLACK

GRAY

GRAY

WHITE

Tricolor Concurrent Nonmoving Mark and Sweep

PROGRAM GRAY

Write Barrier

WHITEBLACK

Tricolor Concurrent Nonmoving Mark and Sweep

STACK BLACK

BLACK

BLACK

WHITE

Tricolor Concurrent Nonmoving Mark and Sweep

PROGRAM WHITEBLACK

Thanks!

