Garbage Collection

Goodies

what are we doing with all this garbage anyway

!

s‘:

|- i"‘ S % '
W ' P

http://www.youtube.com/watch?v=BkHCO8f2TWs

In the beginning...

The Entscheidungsproblem

“We can know, we must know”

Church-Turing Thesis

Early Computers

The Stack

The Stack

STACK

high memory

stack frame

low memory

The Stack

STACK OVERFLOW
_ o _—

The Heap

SEEENEEEE |
B8 | SEEEEEs
SESEEEEEees
EEesEs | | |

The Heap

..—.-..[)L

ey B8 SEEEEES
SEsEEnEEmEEE
ENENEs | | | | |

The Heap
IM».I-....[)
I B | SEEEEs
lllll.-lll
=1 [[[[RN

The Heap

Garbage Collection

“The Goal of the Garbage Collection provides the illusion that a language runtime has

infinite memory.”

Tracing

B | [| .
8 | | SEEEEs
SEEEEEEEs
| | | SN

Scheduling

How often do we run our garbage collector?

heap() *int {
ler=ei?

urn- &1

brandon@l

Escape Analysis

randon-0OMEN-by-HP-Laptop-15z-enl00:

github.com/bjatkin/garbage collectors
9:6: cannot inline heap: marked go:noinline

./main.

./main

./main
./main

~/main.
./main.

go:

.go:
./main.

go:

.go:

.go:

3:6: can inline main with cost 67 as: func() { m
10:
10:
10
$ 102
2105

2:

i escapes to heap:
flow: ~r0 = &i:
from &i (address-of) at ./main.go:11:9
from return & (return) at ./main.go:11:2

: moved to heap: i

$ go build -gcflags "-m -m"

*heap(); m++ }

Reference Counting

SOEENaOnn | |
80 | SOEEEND
800080 000
EBOOes | | | |)

Reference Counting

STACK

Mark and Sweep

| .
gaEN @ 00 |
SEEEEEEEs
| | | SN

Mark and Sweep

Stop and Copy

B | .
B | | SEEEES
SEEEEEEEs
| | | SN

BN | |

Stop and Copy

Generational Garbage Collection

“Most Object Die Young”

Generational Garbage Collection

Old Heap New Heap

Generational Garbage Collection

Mark Compact Garbage Collection

SEEEEEEEes
58 | GG
SEEEEEEENEeS
s | | | |)

Mark Compact Garbage Collection

User
Code

Front-end

Per-thread
cache

TCMalloc

Middle-end i Back-end
Transfer cache
/ Legacy page heap
Central /|
freelist [i
\ Hugepage aware
page heap

/|

...

OS

Garbage Collection In Go

“This omission is intentional and enables the use of radically different memory

‘ «
management techniques.

A Guide to the Go Garbage Collector

Garbage Collection In Go

Escape Analysis
e Tracing

GC Scheduling (CPU usage vs Memory Usage)

Memory vs CPU tradeoff

“‘doubling GOGC will double heap memory overheads and roughly halve GC CPU cost”

A Guide to the Go Garbage Collector

Memory vs CPU tradeoff

https://tip.golang.org/doc/gc-guide

https://tip.golang.org/doc/gc-guide

Optimizing The Go GC

e Make sure the GC is actually a limiting factor for your program (just like any other performance issue)
o CPU profiles
o Execution traces
o GC traces
e Eliminate Heap Allocations
o $ go build -gcflags=-m=3 [package]
e Configure your environment
o $GOGC/ runtime.SetGCPercent()
o SGOMEMLIMIT/runtime.SetMemoryLimit()

GC Thrashing

AAMAAAMMI A A AA, -

Live Heap

y |

0.0s 1.0s 2.0s 3.0s 40s 5.0s 6.0s 7.0s 8.0s 90s 10.0s 11.0s 12.0s

GC CPU = 19.9%, Peak Mem = 30.5 MiB
(Peak Live Mem = 30.0 MiB)

Ch 103 Memory Limit C_ 30.5 MiB

Total: 1248 s

GC Thrashing

prrYYYYYEy Yy

Live Heap

y |

0.0s 1.0s 2.0s 3.0s 40s 5.0s 6.0s 7.0s 8.0s 90s 10.0s 11.0s 12.0s

GC CPU = 19.9%, Peak Mem = 30.5 MiB
(Peak Live Mem = 30.0 MiB)

Ch 103 Memory Limit C_ 30.5 MiB

Total: 1248 s

Latency Vs CPU usage

‘reducing GC frequency may also lead to latency improvements”

Tricolor Concurrent Nonmoving Mark and Sweep

Tricolor Concurrent Nonmoving Mark and Sweep

|)

Write Barrier

Tricolor Concurrent Nonmoving Mark and Sweep

Tricolor Concurrent Nonmoving Mark and Sweep

Tricolor Concurrent Nonmoving Mark and Sweep

|)

BLACK GRAY WHITE

Write Barrier

Tricolor Concurrent Nonmoving Mark and Sweep

Tricolor Concurrent Nonmoving Mark and Sweep

