Garbage Collection

Goodies

what are we doing with all this garbage anyway
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http://www.youtube.com/watch?v=BkHCO8f2TWs

In the beginning...

The Entscheidungsproblem

“We can know, we must know”



Church-Turing Thesis




Early Computers




The Stack




The Stack

STACK

high memory

stack frame

low memory




The Stack
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The Heap
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The Heap
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The Heap
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The Heap




Garbage Collection

“The Goal of the Garbage Collection provides the illusion that a language runtime has

infinite memory.”




Tracing
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Scheduling

How often do we run our garbage collector?




heap() *int {
ler=ei?

urn- &1

brandon@l

Escape Analysis

randon-0OMEN-by-HP-Laptop-15z-enl00:

# github.com/bjatkin/garbage collectors
9:6: cannot inline heap: marked go:noinline

./main.

./main

./main
./main

~/main.
./main.

go:

.go:
./main.

go:

.go:

.go:

3:6: can inline main with cost 67 as: func() { m
10:
10:
10
$ 102
2105

2:

i escapes to heap:
flow: ~r0 = &i:
from &i (address-of) at ./main.go:11:9
from return & (return) at ./main.go:11:2

: moved to heap: i

$ go build -gcflags "-m -m"

*heap(); m++ }



Reference Counting
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Reference Counting

STACK




Mark and Sweep
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Mark and Sweep




Stop and Copy
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Stop and Copy




Generational Garbage Collection

“Most Object Die Young”




Generational Garbage Collection

Old Heap New Heap




Generational Garbage Collection




Mark Compact Garbage Collection
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Mark Compact Garbage Collection
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Garbage Collection In Go

“This omission is intentional and enables the use of radically different memory

‘ «
management techniques.

A Guide to the Go Garbage Collector




Garbage Collection In Go

Escape Analysis
e Tracing

GC Scheduling (CPU usage vs Memory Usage)




Memory vs CPU tradeoff

“‘doubling GOGC will double heap memory overheads and roughly halve GC CPU cost”

A Guide to the Go Garbage Collector




Memory vs CPU tradeoff

https://tip.golang.org/doc/gc-guide



https://tip.golang.org/doc/gc-guide

Optimizing The Go GC

e Make sure the GC is actually a limiting factor for your program (just like any other performance issue)
o  CPU profiles
o  Execution traces
o  GC traces
e Eliminate Heap Allocations
o $ go build -gcflags=-m=3 [package]
e Configure your environment
o $GOGC/ runtime.SetGCPercent()
o SGOMEMLIMIT/runtime.SetMemoryLimit()




GC Thrashing
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GC Thrashing
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Latency Vs CPU usage

‘reducing GC frequency may also lead to latency improvements”
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