
Building GBA games in Go

Brandon Atkinson (Weave DevX)

The GBA
● Released in 2001

● 240x160 LCD (not backlit)

● Successor to the GBC

● Sold 81.51 million lifetime units

The GBA was
Nintendo’s first
32-bit handheld
console.

Tiny Go

Tiny Go
https://tinygo.org/

● A Compiler For Small Places

● Leverages LLVM

● Supports most (but not all) of Go

● Supports many unusual targets

The GBA cont.

● 16.78 MHz CPU

● 32 KB internal, 256 KB
external, 96 KB VRAM

● 16-bit color (BRG)

● 6 video modes

● No OS, or System Calls

Getting Started

Install Tiny Go https://tinygo.org/getting-started/install/

https://tinygo.org/getting-started/install/

There are very few resources
available on go development

https://dev.to/aurelievache/learning-go-by
-examples-part-5-create-a-game-boy-advan
ce-gba-game-in-go-5944

https://github.com/tinygo-org/tinygba

https://tinygo.org/docs/reference/microco
ntrollers/gameboy-advance/

But, there are lots of great C
resources available.

https://www.coranac.com/tonc/text/toc.ht
m

https://www.cs.rit.edu/~tjh8300/CowBite
/CowBiteSpec.htm

https://problemkaputt.de/gbatek.htm

https://www.reinterpretcast.com/writing-a
-game-boy-advance-game

Getting Started

https://dev.to/aurelievache/learning-go-by-examples-part-5-create-a-game-boy-advance-gba-game-in-go-5944
https://dev.to/aurelievache/learning-go-by-examples-part-5-create-a-game-boy-advance-gba-game-in-go-5944
https://dev.to/aurelievache/learning-go-by-examples-part-5-create-a-game-boy-advance-gba-game-in-go-5944
https://github.com/tinygo-org/tinygba
https://tinygo.org/docs/reference/microcontrollers/gameboy-advance/
https://tinygo.org/docs/reference/microcontrollers/gameboy-advance/
https://www.coranac.com/tonc/text/toc.htm
https://www.coranac.com/tonc/text/toc.htm
https://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm
https://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm
https://problemkaputt.de/gbatek.htm
https://www.reinterpretcast.com/writing-a-game-boy-advance-game
https://www.reinterpretcast.com/writing-a-game-boy-advance-game

Getting Started
Don’t do what I did and do this all from
scratch. It’s probably the worst possible
way to make a game. Instead steal from my
code to make your life easier.

https://github.com/bjatkin/flappy-boot

https://github.com/bjatkin/flappy-boot

Talking To Hardware

Memmap
● Map hardware registers to go constants and variables
● Provides facilities for working with hardware registers
● https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/memmap

/memmap.h
● https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/memmap

/memmap.go

https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/memmap/memmap.h
https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/memmap/memmap.h
https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/memmap/memmap.go
https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/memmap/memmap.go

GetReg and SetReg
● The Go Memory Model does not like to share memory
● Do not communicate by sharing memory; instead, share memory by

communicating. (Effective Go)
● https://github.com/bjatkin/flappy-boot/blob/57a2f9561d0202ece08ae755040

0bf7b9f44d637/internal/hardware/memmap/memmap.go#L76
● TinyGo volatile package

https://go.dev/doc/effective_go
https://github.com/bjatkin/flappy-boot/blob/57a2f9561d0202ece08ae7550400bf7b9f44d637/internal/hardware/memmap/memmap.go#L76
https://github.com/bjatkin/flappy-boot/blob/57a2f9561d0202ece08ae7550400bf7b9f44d637/internal/hardware/memmap/memmap.go#L76
https://pkg.go.dev/github.com/tinygo-org/tinygo/src/runtime/volatile

The Type System
● Registers are all just uint16 values
● Don’t rely on just naming conventions, leverage the type system
● https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/display/d

isplay.go

https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/display/display.go
https://github.com/bjatkin/flappy-boot/blob/main/internal/hardware/display/display.go

A GBA Game Engine

Requirements
● Small, simple, and light-weight
● Fit to purpose (only do what the game needs)
● Prevent the gameplay code from touching hardware
● Useful enough to speed up gameplay development

Organization
How It’s Organized:

● Assets
● Cmd
● Gameplay

○ Scenes
○ Game Objects

● Internal
○ Alloc
○ Asset
○ Display
○ Game
○ Hardware
○ Key
○ Lut
○ Math

Allocators
Sprite, Background, and Palette data all use custom allocators.

https://github.com/bjatkin/flappy-boot/blob/main/internal/alloc/vram.go

vram

sprite 1 sprite 2 sprite 5

sprite 1

sprite 50 sprite 51

Init allocator:

allocate / free sprites

Free sprite 5

allocate / free sprites

https://github.com/bjatkin/flappy-boot/blob/main/internal/alloc/vram.go

Backgrounds
● GBA has 96k of vram
● 6 x 16k char blocks
● There are 6 video modes for

backgrounds
○ Mode 0 - tile mode 4 regular bgs
○ Mode 1 - tile mode 2 regular bgs 1 affine
○ Mode 2 - tile mode 2 affine bgs
○ Mode 3 - bitmap mode, 8bpp 1x240x160
○ Mode 4 - bitmap mode, 4bpp 2x240x160
○ Mode 5 - bitmap mode, 4bpp 2x160x128

BG data

BG data

BG data

BG data

sprites

sprites

BG data

BG data

BG data

BG data

Sprite data

Sprite Data

Backgrounds
● Backgrounds include

○ Pallets
○ Tiles
○ Tile Maps

● Each Char block has 8 screen blocks for
tile map data

● I use the bottom 2 char blocks for tile
map data and the top 2 char blocks for
tile data

● Palettes are stored separately

BG data

BG data

BG data

BG data

sprites

sprites

BG data

BG data

BG data

BG data

Sprite data

Sprite Data

Color Palettes
● The GBA is capable of displaying 512 unique colors on screen in any one of it’s

3 tile modes.

16 color palette (2 bytes/color)

…

16 color palette (2 bytes/color)

…

16 Sprite Palettes 16 Background Palettes

Drawing Backgrounds
● Load the background palette into vram
● Load the background tiles into vram
● Load the tile map into vram
● Enable one of the available backgrounds in the display control register

(0x4000000:bits 8-B)
● Configure the BGControll register (0x4000008)

○ Priority (0-4): bits 0-1
○ Set CBB for tiles: bits 2-3
○ Set Color Mode (4bpp or 8bpp): bit 7
○ Set SBB for tile map: bits 8-C
○ Set BG size (small, wide, tall, large): bits E-F

● Configure BGHOffset (0x4000010) and BGVOffset (0x40000012)

Sprites
● GBA has 96k of vram
● 6 x 16k char blocks
● The number of sprites you can load

depends on the video mode.
● My engine assumes 4bpp sprites in the

bottom 2 char blocks

BG data

BG data

BG data

BG data

Sprite data

Sprite Data

Drawing Sprites
● Load the sprite palette into vram
● Load the sprite tiles into vram
● Enable sprites in the display control register (0x4000000:bit C)
● Copy sprite data into the OAM buffer

○ X/Y position
○ Color mode
○ Size/ Shape
○ Horizontal/ Vertical mirror
○ Tile index
○ Priority (0-3)

● Copy the OAM buffer into OAM memory

Handling Input
Input Register (0x04000130)

- - L R ↓ ↑ Start Select B A→←
0123456789AB

- - - -

CDEF

● Default high
● Each bit indicates one of the GBA buttons
● A : (0b1111111111111110)
● B & R : (0b1111111011111101)

Handling Input
Once per frame the game engine
1) Loads currentKeys into previousKeys
2) Loads the hardware input register into currentKeys

This makes the following key tests possible
● KeyPressed - the key is being held down this frame
● KeyReleased - the key is not being held down this frame
● KeyJustPressed - last frame the key was not pressed but this frame it is
● KeyJustReleased - last frame the key was pressed but this frame it is not

https://github.com/bjatkin/flappy-boot/blob/main/internal/game/key.go

https://github.com/bjatkin/flappy-boot/blob/main/internal/game/key.go

Playing Audio
Audio is hard, we’ll come back to this if we have time

These will byte you

The GBA has a
bunch of things
that could “byte”
you. Here’s a
rapid fire list…

These will byte you
VRAM (and other hardware mapped memory) is
managed by the hardware in 16 bit pieces (not 8
like you might think). Only write to this memory
at even addresses (e.g. 0x05000000,
0x06000004) and in with uint16 or uint32
sized chunks.

Go does not like to share memory. The Go
memory model does not allow for hardware
mapped memory. This means you’ll need to
leverage CGo and C’s volatile keyword or
tiny-go’s volatile.Register16 type when reading/
writing to hardware registers. I used CGo in
flappy-boot since I had issues compiling
volatile.Register16 types on linux. Leveraging
generics makes this fairly painless.

https://go.dev/ref/mem
https://go.dev/ref/mem
https://github.com/bjatkin/flappy-boot/blob/57a2f9561d0202ece08ae7550400bf7b9f44d637/internal/hardware/memmap/memmap.h

These will byte you
The garbage collector will eat all your frames. GC
in tiny-go waits for the fully heap to fill up before
running a GC cycle by default. This means when
GC finally does run, you will drop several frames.
Avoid creating garbage whenever you can

● Run a GC cycle every frame (few frames?)
● Use tiny-go’s --print-allocs=.

Compiler flag

I chose to do the latter since flappy bird was small
enough for all structs to live safely in the heap. I
just had to avoid re-creating structs.

Use fixed point numbers, not floating point.
Floating point will suck up valuable cycles and
you likely don’t need the flexibility they provide. I
use 8 fractional bits which is plenty for my needs.
Math is a little different with fixed point numbers
so be aware of that. The fixed point number type
that I use for flappy-boot is defined here.

https://pkg.go.dev/runtime#GC
https://tinygo.org/docs/concepts/compiler-internals/heap-allocation/
https://www.coranac.com/tonc/text/fixed.htm
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://github.com/bjatkin/flappy-boot/blob/main/internal/math/fix.go

These will byte you
The GBA is little endian. This is probably the
inverse of how you think of byte order for larger
numbers. Remember that this applies to palette
colors, tile indexes, and sprite pixels (these are
treated as uint16’s by the hardware). If you see
unusual striping or invalid colors in your
graphical data, check to make sure your data is
using the correct endian-ness. This is especially
important for tools that convert graphics data.

You only have 32k of stack memory and 256k of
heap memory (that’s how tiny-go organizes
memory by default). It’s really easy to blow this
memory up, especially once you start working
with audio data. Go automatically determines if
data should live in ROM or stack/heap memory. If
you’re not careful, compilation will fail due to
insufficient memory.

* you might be able to mitigate this by leveraging
embed.FS and file-streaming to a buffer in RAM.
I have not tested this though

https://en.wikipedia.org/wiki/Endianness

These will byte you
The button input register (KEYINPUT) is
default high. This mean the underlying value is
0xFF_FF when no buttons are pressed and
0xFE_00 when all buttons are pressed. See
https://www.coranac.com/tonc/text/keys.htm
for more information on handling button presses.
I think this is done because it’s easier to set the
hardware up this way given Nintendo used this
convection on the NES and other predecessor
consoles.

Don’t update VRAM while the screen is still
drawing. The GBA splits each frame up into 3
segments; VDraw, HBlank, and VBlank. VDraw
is the time when the hardware is updating the
LCD. This is when you should do gameplay
calculations. VBlank occurs after the screen has
been drawn. This is when you should update
OAM, Color Palettes and other graphics data.
You can see where flappy boot waits for VBlank
here.

https://problemkaputt.de/gbatek.htm#gbaiomap
https://www.coranac.com/tonc/text/keys.htm
https://www.coranac.com/tonc/text/video.htm
https://www.coranac.com/tonc/text/regobj.htm
https://problemkaputt.de/gbatek.htm#lcdcolorpalettes
https://github.com/bjatkin/flappy-boot/blob/57a2f9561d0202ece08ae7550400bf7b9f44d637/internal/game/engine.go#L118

These will byte you
Know hexadecimal and binary and how to convert
between them. You’ll naturally get good at this as
you read through docs and write GBA code. GBA
hardware registers and documentation will
heavily use both these notations. Just remember
easy byte is exactly 2 hex digits. Each hex digit is
exactly 1 nibble. Also, Go allows you to break up
large numbers with _. This is especially useful for
large binary numbers.

Tiny-go is a great tool. It is not however, the Go
compiler. Not all go packages are supported. Go
code that complies with go build may not work
all the time. I’ve had the tiny-go compiler hang
forever, or break on seemingly valid code. Make
small changes, use version control, test
compilation often. Troubleshooting a failing
compiler is no fun and the smaller your changes
are the easier it will be.

https://go.dev/ref/spec#Integer_literals
https://go.dev/ref/spec#Integer_literals
https://tinygo.org/docs/reference/lang-support/stdlib/

These will byte you
Wherever reasonable, consider using a lookup
table (LUT) rather than a function. CPU power is
extremely limited on the GBA so any cycles you
can save will probably be worth it. Flappy boot
uses a LUT to quickly find the sin() of a fixed
point value. Tricks like this lead to quick wins
when you’re running up against the limits of the
GBA’s CPU.

https://www.coranac.com/tonc/text/fixed.htm#sec-lut
https://github.com/bjatkin/flappy-boot/blob/57a2f9561d0202ece08ae7550400bf7b9f44d637/internal/lut/sin.go
https://github.com/bjatkin/flappy-boot/blob/57a2f9561d0202ece08ae7550400bf7b9f44d637/internal/lut/sin.go

Flappy Boot (a flappy bird clone)

Conclusion

Future Work (hardest to easiest)
● A better solution for avoiding the GC (I have some ideas on this)
● A sound engine (I made some early attempts at this but it really needs

hardware interrupts)
● Debugging (GDB is supposedly supported but I’ve never been able to get it

working)
● A text system (the basics are all there so this would be easy I think)
● Hardware interrupts (These are definitely supported, I just haven’t used them

yet)
● Better error handling (relies on a good text system)
● Better TinyGo docs
● More Games! (This is really the most important one)

My Final Pitch
I would love to see more small games

● Pico-8
● Tic-80
● Pixel Vision 8
● A Short Hike
● Untitled Goose Game

https://www.lexaloffle.com/pico-8.php
https://tic80.com/
https://pixelvision8.github.io/Website/
https://ashorthike.com/
https://goose.game/

My Final Pitch
● Small games are easier (and faster) to finish
● Restrictions breed creativity
● 16x16 pixel art is easier to pull off than most art styles
● As developers, we’re capable of handling the technical challenge
● The GBA is small, but has depth for those that want it

