
SLOs With Prometheus:
Done Wrong, Wrong,

 Wrong, Wrong, Then Right

Carson Anderson
DevX-O, Weave

@carsonoid
@carsonoid@kind.social

getweave.com

Good News,
Other Good News

Where did it start?

SLOs To The Rescue!

What is an SLO?

Google: https://sre.google/sre-book/service-level-objectives/

An SLO is a service level objective: a target value or range
of values for a service level that is measured by an SLI

Carson

An SLO is a service level objective: a measure of "normal"
performance for a system

https://sre.google/sre-book/service-level-objectives/

https://sre.google/workbook/implementing-slos/

Objective
"99.9% of HTTP requests will complete

without a 500 level error"

What Was The Vision?

SLO Remaining Budget Formula

Example Data Points
● 10,000 total HTTP Requests handled in the last 28 days
● 20 of the requests have had a server error in the last 28 days

Example Calculations
● 99.9% in decimal = .01
● 10,000 * .01 = 100 Budgeted Failures

Existing Prometheus Metrics

● http_timer_bucket - A histogram of request times
● http_timer_count - A counter for requests
● http_timer_sum - A counter for total time processing

● grpc_timer_bucket - A histogram of request times
● grpc_timer_count - A counter for requests
● grpc_timer_sum - A counter for total time processing

Existing Scale

● All services scraped every minute
● About 200 services serving gRPC

○ Over 400,000 data points per scrape
● About 160 services serving HTTP

○ Over 200,000 data points per scrape

864 Million Data Points per day!

Attempt 1

A Big 'Ol Query!

SLOs for Everyone, All At Once

(
 (sum(increase(http_timer_count[28d])) by (app) * .01)
 -
 (
 (sum(increase(http_timer_count[28d])) by (app))
 -
 (sum(increase(http_timer_count{code!~"5.."}[28d])) by (app))
)
)
/
(sum(increase(http_timer_count[28d])) by (app) * .01)

.01 = 1-.99 =
99%

Total - Passed = Failed 👎 Don't do this.
Just use "or vector(0)" for sparse metrics

(
 (sum(increase(http_timer_count[28d])) by (app) * .01)
 -
 (
 (sum(increase(http_timer_count[28d])) by (app))
 -
 (sum(increase(http_timer_count{code!~"5.."}[28d])) by (app))
)
)
/
(sum(increase(http_timer_count[28d])) by (app) * .01)

Good 👍
● One Query To Write

Bad 👎
● Query never completed
● All apps have to have the same Objective (99%)

Attempt 2

A Smaller Big 'Ol Query!

(One Service At A Time)

(
 (sum(increase(http_timer_count{app="feature-flags"}[28d])) * .01)
 -
 (
 sum(increase(http_timer_count{app="feature-flags"}[28d]))
 -
 sum(increase(http_timer_count{app="feature-flags",code!~"5.."}[28d]))
)
)
/
(sum(increase(http_timer_count{app="feature-flags"}[28d])) * .01)

Good 👍
● Query Completes!

Bad 👎
● Query Eventually Completes

○ About 8.5 seconds for one result
● Query unusable in dashboards

(
 (sum(increase(http_timer_count{app="feature-flags"}[28d])) * .01)
 -
 (
 sum(increase(http_timer_count{app="feature-flags"}[28d]))
 -
 sum(increase(http_timer_count{app="feature-flags",code!~"5.."}[28d]))
)
)
/
(sum(increase(http_timer_count{app="feature-flags"}[28d])) * .01)

Attempt 3: Preamble

Introducing Recording Rules!

What is a recording rule?

A Prometheus query that is run on
a regular basis and then saved

back to the datastore as a unique
data set

my_metric{}

sum(my_metric) by (app)

groups:
- name: my-record-rules
 interval: 1m
 rules:
 - record: my_metric:sum
 query: sum(my_metric) by (app)

sum(my_metric) by (app)
my_metric:sum

Attempt 3

(Mis)Use Recording Rules!

(
 (sum(increase(http_timer_count{app="feature-flags"}[28d])) * .01)
 -
 (
 sum(increase(http_timer_count{app="feature-flags"}[28d]))
 -
 sum(increase(http_timer_count{app="feature-flags",code!~"5.."}[28d]))
)
)
/
(sum(increase(http_timer_count{app="feature-flags"}[28d])) * .01)

Duplication == Lag

- record: slo:feature_flags:request:http:availability:total
 expr: |
 sum(increase(http_timer_count{app="feature-flags"}[28d]))

Per-app Rule 1

- record: slo:feature_flags:request:http:availability:budgeted
 expr: |
 (slo:feature_flags:request:http:availability:total * .01)

Per-app Rule 2

- record: slo:feature_flags:request:http:availability:failed
 expr: |
 (
 slo:feature_flags:request:http:availability:total
 -
 sum(increase(http_timer_count{app="feature-flags",code!~"5.."}[28d]))
)

Per-app Rule 3

- record: slo:feature_flags:request:http:availability:error_budget
 expr: |
 (
 slo:feature_flags:request:http:availability:budgeted -
 slo:feature_flags:request:http:availability:failed
)
 /
 slo:feature_flags:request:http:availability:budgeted

Final
Rule

groups:
- name: feature-flag-slo.rules
 interval: 1m
 rules:
 - record: slo:feature_flags:request:http:availability:total
 expr: |
 sum(increase(http_timer_count{app="feature-flags"}[28d]))
 - record: 'slo:feature_flags:request:http:availability:budgeted'
 expr: |
 (slo:feature_flags:request:http:availability:total * .01)
 - record: 'slo:feature_flags:request:http:availability:failed'
 expr: |
 (
 slo:feature_flags:request:http:availability:total
 -
 sum(increase(http_timer_count{app="feature-flags",code!~"5.."}[28d]))
)
 - record: slo:feature_flags:request:http:availability:error_budget
 expr: |
 (
 slo:feature_flags:request:http:availability:budgeted -
 slo:feature_flags:request:http:availability:failed
)
 /
 slo:feature_flags:request:http:availability:budgeted

All Rules For One App

Good 👍
● Query Completes!
● Final metric renders in dashboard

Bad 👎
● Long unique rule names break dashboard templates
● Random inexplicable spikes in charts
● Rules still don't work at all for some apps

Attempt 3 Results

Attempt 4

Get It Right! 🎉
Or so I thought…

groups:
- name: slo-sum.rules
 interval: 1m
 rules:
 - record: slo_calc:http:code:sum
 expr: sum(http_timer_bucket{le="+Inf"}) by (app,code)
 - record: slo_calc:http:time:sum
 expr: sum(http_timer_bucket) by (app,le)
 - record: slo_calc:grpc:code:sum
 expr: sum(grpc_timer_bucket{le="+Inf"}) by (app,code)
 - record: slo_calc:grpc:time:sum
 expr: sum(grpc_timer_bucket) by (app,le)

System-Wide Sum metrics

(
 (sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d])) * .01)
 -
 (
 sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d]))
 -
 sum(increase(slo_calc:http:code:sum{app="feature-flags",code!~"5.."}[28d]))
)
)
/
(sum(increase(slo_calc:http:code:sumapp="feature-flags"[28d])) * .01)

groups:
- interval: 3m
 name: feature-flags.slo.rules
 rules:
 - record: slo
 expr: |
 (
 (sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d])) * .01)
 -
 (
 sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d]))
 -
 sum(increase(slo_calc:http:code:sum{app="feature-flags",code!~"5.."}[28d]))
)
)
 /
 (sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d])) * .01
 labels:
 app: feature-flags
 objective: availability
 description: 99.9% of grpc requests will complete without error
 type: http

Per-App Record Rule

Good 👍
● Query Completes for every app all the time!
● No more random spikes!
● Final metrics are fast in dashboard
● Final metrics are easily templated

Attempt 4 Results

Attempt 5?

Ok, so…

(
 (sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d])) * .01)
 -
 (
 sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d]))
 -
 sum(increase(slo_calc:http:code:sum{app="feature-flags",code!~"5.."}[28d]))
)
)
/
(sum(increase(slo_calc:http:code:sumapp="feature-flags"[28d])) * .01)

https://prometheus.io/docs/prometheus/latest/querying/functions/#increase
increase should only be used with counters and native histograms where the components behave like

counters. [...]

sum(increase(sum(http_timer_count{app="feature-flags"}) by (app,code))[28d]))

sum(increase(slo_calc:http:code:sum{app="feature-flags"})[28d]))

 - record: slo_calc:http:code:sum
 expr: sum(http_timer_count{}) by (app,code)

(
 (sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d])) * .01)
 -
 (
 sum(increase(slo_calc:http:code:sum{app="feature-flags"}[28d]))
 -
 sum(increase(slo_calc:http:code:sum{app="feature-flags",code!~"5.."}[28d]))
)
)
/
(sum(increase(slo_calc:http:code:sumapp="feature-flags"[28d])) * .01)

x

x

x

y

C

C

{ xC - (x - y) } / xC

{ xC / xC } - ({x - y}/{ xC})

1 - {(x - y)/(xC)}

1 - {(x / xC) - (y/xC)}

1 - {(1 / {1C}) - (y/xC)}

1 - {(1 / C) - (y/xC)}

Simplify Proofs
{ xC - (x - y) } / xC

{ xC / xC } - ({x - y}/{ xC})

1 - {(x - y)/(xC)}

1 - {(x / xC) - (y/xC)}

1 - {(1 / {1C}) - (y/xC)}

1 - {(1 / C) - (y/xC)}

1 - (
 sum(increase(http_timer_count{app="feature-flags",code=~"5.."}[28d]))
 or vector(0)
 /
 (sum(increase(http_timer_count{app="feature-flags"}[28d])) * .01)
)

groups:
- interval: 3m
 name: feature-flags.slo.rules
 rules:
 - record: slo
 expr: |
 1 - (
 sum(increase(http_timer_count{app="feature-flags",code=~"5.."}[28d]))
 or vector(0)
 /
 (sum(increase(http_timer_count{app="feature-flags"}[28d])) * .01)
)
 labels:
 app: feature-flags
 objective: availability
 description: 99.99% of grpc requests will complete without error
 type: http

Final Per-App Record Rule

What About Scale?

1 - (
 sum(increase(http_timer_count{app="feature-flags",code=~"5.."}[14d]))
 or vector(0)
 /
 (sum(increase(http_timer_count{app="feature-flags"}[14d])) * .01)
)

Option: Reduce Range

1 - (
 sum(increase(slo_calc:http_timer_count{app="feature-flags",code=~"5.."}[28d]))
 or vector(0)
 /
 (sum(increase(slo_calc:http_timer_count{app="feature-flags"}[28d])) * .01)
)

groups:
- name: slo-reduce.rules
 interval: 5m
 rules:
 - record: slo_calc:http_timer_count
 expr: http_timer_count

Option: Re-record (without sum)

No "sum()"!

Provider Change

Final thoughts
● Keep inputs simple and clean
● Standardize metric names and labels
● Use record rules to get dashboard friendly metrics

○ Be very careful with record rules
○ Be very, very careful with them in other

queries!
■ Test logic by putting the rule query in the

place of the rule

Thank you!

Carson Anderson
DevX-O, Weave

